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Abstract Purpose: Basic surgical skills of suturing and

knot tying are an essential part of medical training.

Having an automated system for surgical skills assess-

ment could help save experts time and improve train-

ing efficiency. There have been some recent attempts at

automated surgical skills assessment using either video

analysis or acceleration data. In this paper, we present

a novel approach for automated assessment of OSATS-

like surgical skills and provide an analysis of different

features on multi-modal data (video and accelerometer

data).

Methods: We conduct a large study for basic surgical

skill assessment on a dataset that contained video and

accelerometer data for suturing and knot-tying tasks.

We introduce “entropy based” features – Approximate

Entropy (ApEn) and Cross-Approximate Entropy
(XApEn), which quantify the amount of predictabil-

ity and regularity of fluctuations in time-series data.

The proposed features are compared to existing meth-

ods of Sequential Motion Texture (SMT), Discrete Co-

sine Transform (DCT) and Discrete Fourier Transform

(DFT), for surgical skills assessment.

Results: We report average performance of different fea-

tures across all applicable OSATS-like criteria for sutur-

ing and knot tying tasks. Our analysis shows that the

proposed entropy-based features outperform previous

state-of-the-art methods using video data, achieving av-

erage classification accuracies of 95.1% and 92.2% for

suturing and knot tying, respectively. For accelerometer

data, our method performs better for suturing achiev-

ing 86.8% average accuracy. We also show that fusion
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of video and acceleration features can improve overall

performance for skill assessment.

Conclusions: Automated surgical skills assessment can

be achieved with high accuracy using the proposed en-

tropy features. Such a system can significantly improve

the efficiency of surgical training in medical schools and

teaching hospitals.

Keywords Surgical skills assessment · Computer

vision · Machine learning · Multi-modal data

1 Introduction

Surgical trainees are required to acquire specific skills

during the course of their residency before performing

real surgeries. Surgical training involves constant prac-
tice of skills and seeking feedback from supervising sur-

geons, who generally have a packed schedule. Further-

more, manual assessments, even by experts are subjec-

tive and prone to errors. Objective Structured Assess-

ment of Technical Skills (OSATS) is adopted in most

medical schools as a standard to assess surgical resi-

dents [1]. The OSATS grading scheme includes specific

criteria like Respect for Tissue (RT), Time and Mo-

tion (TM), Instrument Handling (IH), Flow of Oper-

ation (FO), Knowledge of Procedure (KP), and Over-

all Performance (OP). While adopting OSATS grading

system reduces the subjectivity of assessment to some

extent, the grading itself can take up lot of time of the

generally few expert surgeons available. The original

OSATS grading is done on a scale of 1 to 5 for each cri-

teria except for Overall Performance (OP) which has a

Pass/Fail grading. Please note that some recent works,

along with ours, have used a modified version of OS-

ATS where OP is also graded on a scale of 1 to 5 along

with an additional criteria “Suture Handling” (SH) [2,
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Fig. 1 Flow diagram for processing the video and accelerometer data.

3]. Therefore, we will use the term “OSATS-like” to de-

note this modified grading scheme in this paper where

appropriate.

To address the time consuming and subjective na-

ture of manual assessments, recent works have proposed

techniques that analyze motion from videos [4,5,2,6]

and wearable sensors to assess surgical skills [7–10].

These approaches showcase different feature types to

perform OSATS-like assessments. In this paper, we present

entropy based features for automated surgical skills as-

sessment. Our main contributions are as follows:

Contributions: (1) We propose a novel way of

leveraging the predictability and irregularity of fluctu-

ations in surgical motions to assess OSATS-like skills

using entropy features. (2) We provide a comparison

of existing techniques on both video and acceleration

data. (3) We conduct a large study (containing 41 par-

ticipants) on assessing basic surgical tasks like suturing

and knot tying.

2 Background

The problem of automated surgical skills assessment

and gesture recognition has recently seen some good

progress. Pioneering efforts were based on robotic min-

imally invasive surgery (RMIS) and focused on gesture

recognition and skill assessment using Hidden Markov

Models [11,12]. These initial endeavors attempted to

identify gestures or motion sequences for a specific sur-

gical task. These gesture based methods were mostly

used for surgical activity recognition and in some cases

for surgical skill assessment. Surgical activity recogni-

tion works have used methods like linear dynamical sys-

tems (LDS) and bag of words (BoW) models [13,14] and

more recently, deep neural networks and recurrent neu-

ral network based approaches have been reported [15,

16] for surgical tool detection and gesture recognition.

Some works have also proposed unsupervised methods

for clustering surgical activities [17,18].

Unlike surgical gesture recognition or tool detec-

tion, assessment of surgical skills attempts to classify

a motion sequence into different expertise levels. Dif-

ferent techniques and data modalities have been used

for this purpose. For example, [8] studied robotic sur-

gical movements and reported significant difference in

the needle-driving movements of experienced surgeons

and novices. GEARS(Global Evaluative Assessment of

Robotic Skills) is an assessment tool specifically devel-

oped to assess levels of robotic surgical expertise and is

known to be consistent and reliable as reported in [19].

Rising interests in assessment of robotic surgical skills

have also led to crowd sourcing techniques to derive

surgical skill assessment metrics [9].

Despite advances in robotic surgical procedures, as-

sessment of conventional surgical skills such as suturing

and knot tying is done using OSATS in medical schools

and teaching hospitals. Several works have recently ad-

dressed automated assessment based on OSATS-like

scores. For example, Augmented BoW (A-BoW) fea-

tures introduced in [4], modeled motion as short se-

quences of events and the underlying temporal and struc-

tural information is automatically discovered and en-

coded into BoW models. Other techniques based on the

holistic analysis of time series data include Motion Tex-

ture(MT) [5] for prediction of surgical skill scores by

encoding video motion dynamics into frame kernel ma-

trices followed by texture analysis. Sequential Motion

Textures (SMT) was proposed in [2] which included the

sequential information into MT technique by dividing

the time series into sequential time windows. More re-

cently frequency based features (DFT and DCT) [6,3]

have also been used for surgical skill classification. An

exhaustive analysis of video based OSATS-like assess-
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Fig. 2 (a) Sample sine waves with different SNR. (b) Variation of approximate entropy (ApEn) with respect to SNR (c)
Sample sine waves with different phases (d) Variation of cross approximate entropy (XApEn) with respect to phase difference
between signals

ments is presented in [3], however, results for only video

data are presented.

The techniques mentioned above do provide encour-

aging results for video based OSATS-like surgical skill

assessment. However, these studies use very few par-

ticipants which limits their ability to capture the wide

variation in surgical skills. An expert surgeon’s hand

motion might be more clean, distinct, ordered and se-

quential as compared to a non-expert and having more

samples helps capture skills of varying levels. Most of

the works mentioned above have focused on granularity

(MT, SMT) and repetitiveness (DFT, DCT) of motion,

however, disorder in motion has not been addressed.

Also, they do not include studies on wearable motion

sensing devices such as accelerometers that may pro-

vide precise motion information for surgical skills as-

sessment.

In the computer vision literature, there has been

some recent progress in assessing quality of actions, es-

pecially in the sports domain. In [20], the authors pre-

sented an approach of using pose with frequency fea-

tures to predict sports scores. More recently, [21] used

entropy features with pose to predict scores for Olympic

diving videos. We take inspiration from these works and

propose to encode predictability in surgical motions via

entropy based features for skills assessment.

In this work, we provide comparative analysis of sev-

eral features using video and acceleration data on a

large group of participants. We also propose entropy

based features (encoding orderliness in motion) and

demonstrate their efficacy as they outperform other

types of features for both acceleration and video data.

3 Methodology

We believe that difference in the motion predictabil-

ity of surgeons with varying skills levels can be used

to assess the basic surgical skills, for specific tasks like

suturing and knot tying. An expert will have more pre-

dictable hand motion while a beginner will exhibit er-

ratic and irregular patterns. We propose to measure

this difference in predictability of motions using entropy

based features Approximate Entropy (ApEn) and Cross

Approximate Entropy (XApEn).

Figure 1 shows the flow diagram for processing video

and accelerometer data. For videos, we follow the stan-

dard approach, as used by [2,6,3], for encoding motion

information from video data into a multi-dimensional

time series using Spatio-Temporal Interest Points

(STIPS) [22]. As presented in these previous works, we

use expert videos to learn motion classes via k-means

clustering for different number of clusters K. These mo-

tion classes are then used to convert each video into a

multi-dimensional time series Tv ∈ <K×N , where K

represents the number of motion classes learnt (num-

ber of clusters used in k-means clustering) and N is the

number of frames in the video. For the three-dimensional

accelerometer data, the x, y, and z acceleration time

series captured from two accelerometers for each sur-

gical task are concatenated to produce a time series

Ta ∈ <6×Q, where Q is the number of samples cap-

tured. We also use individual accelerometer time series

data for our analysis as discussed in Section 5. The time

series data obtained for both modalities is then used for

feature extraction and skill prediction. Sequential for-

ward selection (SFS) [23] is used to reduce the dimen-

sionality of the features and a Nearest-Neighbor (NN)

classifier is used for classification.

3.1 Entropy Features for Skill Assessment

Approximate Entropy: Approximate entropy is a mea-

sure of regularity in time series data initially proposed

in [24]. A more predictable time series would have a
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low approximate entropy value whereas an irregular

time series would have a higher entropy. For a one-

dimensional time series, the approximate entropy ApEn

is dependent on three parameters: embedding dimen-

sion (m), radius (r) and time delay (τ). The embed-

ding dimension (m) represents the length of the se-

ries which is being checked for repeatability, the ra-

dius (r) is used for local probabilities estimation and

time delay (τ) is selected in order to make the com-

ponents of the embedding vector independent. For a

given time series T ∈ <N , we form a sequence of em-

bedding vectors x(1), x(2), . . . , x(N − m + 1), where

x(i) is given by x(i) = [Ti, Ti+τ , . . . , Ti+(m−1)τ ], for

1 ≤ i ≤ N − (m − 1)τ . Then, for each embedding vec-

tor x(i), the frequency of repeatable patterns Cmi (r) is

calculated by

Cmi (r) =
1

N − (m− 1)τ

∑
j

H(r − dist(x(i), x(j))) (1)

where H is a Heaviside step functions and

dist(x(i), x(j)) = max(|T (i + (k − 1)τ) − T (j + (k −
1)τ)|) for k ∈ [1, 2, . . . ,m]. The conditional frequency

estimates are calculated by

Ωm(r) =
1

N − (m− 1)τ

N−(m−1)τ∑
i=1

ln(Cmi (r) (2)

Ω(r) is then used to calculate the approximate entropy

for the time series T ∈ <N as ApEn(m, r, τ) = Ωm(r)−
Ωm+1(r).

In order to show how ApEn varies for signals with

different predictability, we generate a set of sinusoids V .

A pure sine wave without any noise can be considered

as completely predictable since it has a fixed repeat-

ing pattern. However, adding noise to the same func-

tion would make it less predictable. We induce white

Gaussian noise into our set of sinusoids V to vary the

signal-to-noise (SNR) of the set of signals. The range

of SNR in the set V was kept from 1 to 50. Figure 2(a)

shows some sample sinusoidal waves in the set V with

different SNR. Figure 2(b) shows the variation of ApEn

with varying SNR and radius. As expected, we can see

that the higher the SNR (lesser noise), the lower the

value of ApEn gets for any value of r.

Cross Approximate Entropy: Cross approximate

entropy (XApEn) is a measure of asynchrony between

two time series [25]. For two given time series [T, S] ∈
<N , the embedding vectors are defined as x1(i) = [Ti,

Ti+τ , . . . , Ti+(m−1)τ ] and x2(i) = [Si, Si+τ , . . . ,

Si+(m−1)τ ], for 1 ≤ i ≤ N − (m− 1)τ .

The frequency of repeatable patterns Cmi (r)(T ||S)

for the embedding vectors x1(i) and x2(i) is then cal-

culated by

Cmi (r)(T ||S) = 1
N−(m−1)τ

∑
j H(r − dist(x1(i), x2(j)))

(3)

Ωm(r) is then calculated using

Ωm(r) =
1

N − (m− 1)τ

N−(m−1)τ∑
i=1

ln(Cmi (r)(T ||S))

(4)

This is then used to finally calculate the cross ap-

proximate entropy between the two time series by

XApEn(m, r, τ) = Ωm(r)(T ||S)−Ωm+1(r)(T ||S).

Similar to ApEn, we generate a set of sinusoids W

to show the variation of XApEn for varying synchrony

between different signals. The set W consists of sinu-

soids with the same SNR but with phase varying from 0

to π. Figure 2(c) shows some sample of sinusoids in this

set. Figure 2(d) shows how the value of XApEn varies

when the phase difference between the signals varies.

We can see that the value of XApEn reaches a max at

about 0.5π and then reduces back to 0 at π phase differ-

ence. It is important to note that two sinusoids with a

phase difference of π are completely out of phase but in

perfect synchrony. This is because if one increases the

other decreases with the same rate. This should result

in a very low XApEn value which we observe in Figure

2(d) as well.

Surgical motions in suturing and knot tying tasks

are inherently repetitive in nature. The repetitiveness of

motion can be encoded using frequency features. How-

ever, frequency features would not be able to capture

the sudden movements or jerks in motion that define

the competency of a surgeon. They do not quantify the

orderliness or predictability of patterns. On the other

hand, approximate entropy represents the likelihood of

occurrence of similar patterns of observations. A time

series containing many repetitive patterns has lower ap-

proximate entropy and is more predictable.Therefore,

using ApEn features can potentially capture repetitive-

ness along with more finer details crucial for skills as-

sessment. Moreover, in surgical motions, it is also im-

portant for surgeons to move their hands and tools in

a smooth motion together. We think that XApEn fea-

tures can potentially capture information on how syn-

chronized the surgeon’s hands and tools are with each

other. We use both the entropy based features described

above to encode surgical motion predictability for our

analysis.
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Table 1 Skill class distribution for each of the OSATS-like criteria (RT: Respect for Tissue, TM: Time and Motion, IH:
Instrument Handling, SH: Suture Handling, FO: Flow of Operation, OP: Overall Performance). Each cell contains two values
V : A, where V = No. of samples for video data, A = No. of samples for acceleration data.

Suturing Knot Tying
RT TM IH SH FO TM SH FO OP

Beginner 38 : 28 46 : 34 47 : 35 47 : 35 45 : 33 27 : 18 27 : 19 22 : 15 23 : 15
Intermediate 22 : 20 15 : 15 13 : 13 17 : 17 18 : 18 22 : 17 28 : 21 28 : 22 28 : 22

Expert 14 : 14 13 : 13 14 : 14 10 : 10 11 : 11 25 : 19 19 : 14 24 : 17 23 : 17

Fig. 3 Image on left shows a screenshot from ELAN software for synchronization of video and accelerometer data. Middle
column and right most columns show sample frames for suturing and knot tying, respectively. The accelerometers can also be
seen placed on the wrists and the needle-holder

4 Experimental Evaluation

4.1 Data Set

Our data set consists of video and accelerometer data

for evaluating the performance of proposed and pre-

vious state-of-the-art features for skill assessment. We

use the surgical skills dataset from [6] for direct compar-

isons. This dataset had 18 participants. We augmented

this dataset with additional 23 participants to a to-

tal of 41 participants consisting of surgical residents

and nurse practitioners, essentially doubling the data

set from previous studies. In suturing, the participants

were asked to perform a “running suture” using an in-

strument (needle holder) for a specified amount of time,

resulting in varied number of sutures completed. For

knot tying, the participants were asked to tie knots for

a given time using their hands only (without any in-

struments). In this data set, each participant undertook

two instances each of suturing and knot tying tasks. For

each instance, video data was captured at 30 frames per

second at a resolution of 640 × 480 using a standard

RGB camera. We captured a fixed number of frames

for each surgical task: 4000 for suturing and 1000 for

knot tying. Each video was captured in different light-

ing conditions and from varying camera angles to make

the data set invariant to lighting and viewing angle.

Figure 3 shows some sample frames from the videos.

Due to acquisition errors, some videos had to be ex-

cluded from the data set resulting in 74 videos (from

38 participants) for each surgical task.

The acceleration data was captured using Axivity

WAX91 sensors. Two accelerometers were used for each

surgical task. For knot tying, one accelerometer was at-

tached to each hand wrist whereas for suturing, one ac-

celerometer was attached to the dominant hand wrist

and one to the needle-holder. This was done because for

suturing, there was very little movement of the non-

dominant hand and would not contribute much. On

the other hand, needle holder is the main instrument

used for suturing. Hence we capture the motion of the

dominant hand and the needle holder for suturing. The

data captured consisted of x, y and z acceleration val-

ues resulting in a 3-dimensional time series for each

accelerometer. At the start of each instance, all partici-

pants were asked to rapidly shake the hands/instruments

with the accelerometers to get the synchronization wave-

form that is used to align the starting point of accel-

eration data with the video using the ELAN software

1 https://axivity.com/downloads/wax9
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Fig. 4 OSATS-like score distribution for both tasks in the dataset. For this plot, the individual scores for each criteria were
summed for each participant.

[26] (a snapshot shown in figure 3). The accelerometer

data had some additional noise as the accelerometers

were not being attached properly, resulting in unwanted

jerks. For some cases, the accelerometer even fell off

during a session and had to be reattached. All such

samples were removed from the data set resulting in a

final 54 acceleration data samples for knot tying (from

30 participants) and 62 for suturing (from 33 partici-

pants). The average length with standard deviations of

the acceleration data was 8434± 2030 for suturing and

1919± 507 for knot tying.

In order to generate the ground truth skill levels, we

asked an expert to watch the videos and give OSATS-

like scores (on a scale of 1 to 5) for each participant. The

scores were then divided into three categories: beginner

(score = [1, 2]), intermediate (score = 3) and expert

(score = [4, 5]). A complete class distribution for video

and accelerometer data is given in Table 1. We also

show the distribution of the sum of OSATS-like scores

in Figure 4 for both tasks. Please note that we only

use the OSATS-like criteria being used in our partner

hospital for actual assessment. For example, RT and IH

were not used for knot tying since there is no direct tis-

sue contact with no instrument being used. Scores for

OP in suturing and KP in both tasks, were not avail-

able. This dataset is not currently publicly available

for download. However, we do plan to release it in the

future.

4.2 Parameter Selection

All the free parameters for the entropy based features

(ApEn, XApEn) and previous state-of-the-art features

(SMT, DCT, DFT) were tuned on the data set that

we extended in this work to find the optimal values.

For SMT, DCT and DFT, parameter tuning led to the

same parameter values as presented in [2,6,3]. Tradi-

tional methods such as HMM, BoW and A-BoW were

reported to perform poorly as compared to SMT and

DCT/DFT features in [6] and hence were excluded from

the experiments.

We used K ∈ [2, 3, . . . , 10, 12, . . . , 20] for k-means

clustering to learn motion classes (the number of time

series dimensions used) for analysis of video data. The

accelerometer data, however, did not have this depen-

dency with a 6-dimensional time series (concatenation

of 3-dimensional time series from two accelerometers

used) for all evaluations. As described in the previous

section, entropy based features are dependent on some

parameters which need to be specified. These are the

embedding dimension (m), time delay (τ) and the ra-

dius (r). In order to differentiate time series data on

the basis of regularity, radius (r) needs to be equal to

rcoeff×std, where rcoeff can range from 0.1 to 0.25 and

std denotes the standard deviation of the time series.

For the embedding dimension, m = 1 and m = 2 both

work equally well according to [24]. The time delay τ

essentially represents the factor by which the input data

is downsampled for further calculations.

For ApEn, the approximate entropy for each di-

mension of the time series is calculated for values of

rcoeff = [0.1, 0.13, 0.16, 0.19, 0.22, 0.25] resulting in a

feature vector θApEn ∈ <RApEnK , where RApEn repre-

sents the number of radius values used for ApEn and K

is the dimension of time series used (6 for acceleration

data but variable for video data). However, for XApEn,

we use the same values of rcoeff for accelerometer data

but only use rcoeff = 0.2 for videos. This was done since

it was observed that the value of XApEn did not vary

much for different values of rcoeff for videos. More-

over, the computation time for XApEn also increases

significantly with increasing dimensionality of time se-

ries as is the case for videos. We obtain a final fea-

ture vector for cross entropy θXApEn ∈ <
RXApEnK(K−1)

2 ,

where RXApEn denotes the number of radius values
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Fig. 5 Average classification accuracy (Âk) versus K (number of dimensions of time series) for video data. (Best viewed in
color)
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Fig. 6 Average classification accuracies with standard deviations for accelerometer data using individual and combination of
the two accelerometers. (Best viewed in color)

Table 2 Highest average classification accuracies with standard deviations for different techniques using multi-modality data.
For video data, K corresponding to highest accuracy is also shown.

Video Accelerometer
Suturing Knot Tying Suturing Knot Tying

SMT 78.9 ± 5.7 (K=3) 61.1 ± 2.3 (K=10) 72.9 ± 4.5 72.7 ± 5.3
DCT 91.9 ± 3.4 (K=9) 89.5 ± 2.8 (K=9) 84.5 ± 4.9 83.3 ± 2.1
DFT 92.4 ± 3.7 (K=7) 86.8 ± 2.8 (K=10) 85.5 ± 3.0 84.7 ± 4.1
ApEn 93.7 ± 2.2 (K=20) 89.2 ± 5.3 (K=20) 80.3 ± 2.1 75.0 ± 6.5

XApEn 91.4 ± 3.0 (K=16) 90.9 ± 4.3 (K=20) 81.0 ± 4.0 66.2 ± 4.1
ApEn+XApEn 95.1 ± 3.1 (K=16) 92.2 ± 3.0 (K=14) 86.8 ± 4.5 78.7 ± 5.8

used for XApEn. We also check the performance of fus-

ing ApEn and XApEn before classification by concate-

nation, resulting in a feature vector θApEn+XApEn ∈
<

K(2RApEn+RXApEn(K−1))

2 .
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Table 3 Per class average precision and recall values over all OSATS-like criteria with standard deviations using video data
corresponding to Table 2. The values in each cell are in the format Precision | Recall.

Suturing Knot Tying
Beginner Intermediate Expert Beginner Intermediate Expert

SMT 89.0±5.7 | 82.3±4.5 66.2±11.8 | 73.2±15.5 60.9±14.7 | 72.6±18.1 68.4±5.6 | 65.5±2.0 51.8±9.4 | 58.4±4.7 63.7±6.9 | 59.4±11.1
DCT 97.3±2.8 | 94.0±1.6 79.2±14.6 | 90.7±7.6 86.0±10.1 | 85.4±10.6 86.5±7.4 | 92.2±7.0 88.3±5.5 | 92.2±5.7 93.1±5.9 | 85.1±2.1
DFT 96.5±2.8 | 94.0±2.5 82.1±11.8 | 90.7±8.9 91.0±9.3 | 89.3±5.2 88.1±7.9 | 85.6±4.9 91.5±7.3 | 85.3±5.4 79.7±9.9 | 90.8±7.7
ApEn 97.6±1.9 | 96.3±2.9 86.7±8.4 | 90.1±3.0 94.6±5.0 | 95.3±4.4 91.1±4.4 | 90.0±5.3 86.8±4.5 | 84.8±7.8 89.5±8.1 | 93.8±3.7

XApEn 97.6±2.4 | 92.8±3.6 80.6±9.0 | 92.6±6.9 93.8±6.2 | 96.6±4.6 91.6±4.1 | 94.2±3.9 88.6±3.3 | 87.9±7.6 91.9±9.4 | 91.8±7.5
ApEn+XApEn 98.1±2.2 | 95.2±3.2 92.4±7.0 | 92.2±5.2 89.3±8.6 | 100.0±0.0 95.0±3.9 | 93.0±6.8 89.7±5.1 | 91.4±3.1 91.6±8.4 | 93.7±6.3

Table 4 Per class average precision and recall values over all OSATS-like criteria with standard deviations using accelerometer
data corresponding to Table 2. The values in each cell are in the format Precision | Recall.

Suturing Knot Tying
Beginner Intermediate Expert Beginner Intermediate Expert

SMT 82.3±4.1 | 79.0±5.0 60.7±7.9 | 69.0±7.8 63.9±11.0 | 61.6±13.4 54.8±8.4 | 75.4±11.5 81.0±7.2 | 66.9±3.2 80.4±3.5 | 80.6±9.6
DCT 95.8±4.4 | 83.1±5.5 80.2±7.5 | 88.0±5.2 60.5±7.9 | 84.7±15.0 83.6±9.1 | 79.7±9.7 85.3±7.6 | 84.7±3.3 80.4±3.5 | 87.3±9.3
DFT 94.2±5.5 | 88.7±3.5 82.1±7.5 | 82.8±7.3 67.2±12.7 | 81.9±11.0 84.9±3.8 | 87.8±6.8 88.1±5.7 | 78.3±2.0 80.7±6.9 | 91.4±3.8
ApEn 91.9±4.2 | 82.5±3.0 64.1±10.0 | 76.1±10.0 69.1±6.0 | 76.4±6.0 74.0±15.1 | 69.0±10.3 67.7±6.6 | 76.5±6.2 82.7±10.7 | 80.9±10.5

XApEn 90.7±5.5 | 82.9±6.7 73.0±17.2 | 78.2±9.5 61.9±15.5 | 82.9±7.4 54.3±7.4 | 70.6±15.4 70.4±5.3 | 63.6±6.8 72.7±10.7 | 67.7±4.2
ApEn+XApEn 93.9±2.1 | 86.2±6.8 75.5±13.6 | 86.4±5.9 81.7±14.0 | 93.2±7.5 77.7±8.9 | 75.8±10.7 72.3±10.0 | 81.3±1.8 86.0±9.8 | 79.3±8.3

The value of m is set as 1 for all evaluations since a

higher value did not improve the performance in our

case. It was observed that down-sampling the input

data (keeping τ > 1) deteriorated the skill assessment

performance. Therefore, τ was set as 1. For fair com-

parisons with previously proposed techniques, we use

similar classification methodology and adopt leave-one-

out cross validation (LOOCV) using a Nearest Neigh-

bor (NN) classifier with a cosine distance metric. We

also use sequential forward selection (SFS) for feature

selection. For a feature set Ψ = {ψj |j = [1, . . . , P ]},
SFS finds a subset of features Ψ̂ = {ψ̂i|i = [1, . . . , Q]},
where Q < P . In our evaluation, we used a Nearest-

Neighbor (NN) classifier (i.e. k-NN classifier for k = 1)

with a cosine distance metric as a wrapper function for

SFS. For fair comparison with previous works [2,6,3],

the value of Q was set to be 20 (reducing the dimen-
sionality of the final feature vector to be less than or

equal to 20). However, we did note that in our analy-

sis, almost always the number of features selected were

less than 20. Not using SFS significantly deteriorated

performance of all features.

4.3 Evaluation Metrics

Different metrics were used to compare performances of

various features on our data set. For video, we calculate

the average classification accuracy over all OSATS-like

criteria for different features for all values of K in order

to find the optimum number of clusters for each fea-

ture type. The average accuracy Âk is calculated using

Âk = 1
O

∑
OSATS

AK , where AK is the accuracy using

K clusters for a specific OSATS-like criteria, and O

represents the total number of applicable OSATS-like

criteria for that task. For accelerometer data, we eval-

uate the different features for both the accelerometers

attached for each task; wrist and needle-holder for su-

turing and hand wrists for knot tying. Accuracies are

averaged over all OSATS-like criteria for accelerometer

data as well.

We also calculate the class wise precision and re-

call values as precision = tp
tp+fp and recall = tp

tp+fn ,

where tp is true positive, fp is false positive and fn

denotes the false negatives for the corresponding class.

Again, the per-class precision and recall values are av-

eraged over all OSATS-like criteria for a more compact

representation.

5 Results

The features and evaluation metrics described in the

previous section were evaluated on video and accelerom-

eter data for suturing and knot tying tasks for all ap-

plicable OSATS-like criteria. Figure 5 shows the com-

parison of different features for suturing and knot ty-

ing tasks using video data while using different values

of K. Figure 6 shows the average classification results

achieved using accelerometer data. The highest aver-

age accuracy and the corresponding standard devia-

tions achieved for different techniques are given in Table

2. Along with highest average accuracies, we also show

the results for individual OSATS-like criteria using op-

timal K for each feature type (as indicated in Table 2)

in Figure 7. The per-class precision and recall values

corresponding to accuracies given in Table 2 are given

in Tables 3 and 4.

In order to check the statistical significance of the

presented results in Table 2, we conducted McNemar’s

test [27]. The best performing feature for each modal-

ity and surgical task was compared with the rest of the



Multi-Modal Automated Surgical Skills Assessment 9

70

75

80

85

90

95

100

Flow of
Operation

Instrument
Handling

Respect for
Tissue

Suture
Handling

Time and
Motion

Video - Suturing

50
55
60
65
70
75
80
85
90
95

100

Flow of
Operation

Suture
Handling

Time and
Motion

Overall
Performance

Video - Knot Tying

60

65

70

75

80

85

90

95

100

Flow of
Operation

Instrument
Handling

Respect for
Tissue

Suture
Handling

Time and
Motion

Accelerometer - Suturing

55
60
65
70
75
80
85
90
95

100

Flow of
Operation

Suture
Handling

Time and
Motion

Overall
Performance

Accelerometer – Knot Tying

C
la

ss
if

ic
at

io
n

 
A

cc
u

ra
cy

 (
%

)

C
la

ss
if

ic
at

io
n

 
A

cc
u

ra
cy

 (
%

)
C

la
ss

if
ic

at
io

n
 

A
cc

u
ra

cy
 (

%
)

C
la

ss
if

ic
at

io
n

 
A

cc
u

ra
cy

 (
%

)

Fig. 7 Individual OSATS-like criteria results for video and accelerometer data. For each feature, the optimal value of K (as
indicated in Table 2) was used. (Best viewed in color)

Table 5 McNemar’s test of statistical significance for results
presented in Table 2. For each column, the highest perform-
ing feature (denoted by “HPF”) was compared with all other
features to check if the higher accuracy achieved is statisti-
cally significant by evaluating the p-value. For example, in
the first column, ApEn+XApEn performance was compared
to rest. The improvement in accuracy is statistically signifi-
cant if p-value<0.05.

Video Accelerometer
Suturing Knot Tying Suturing Knot Tying

SMT <0.01 <0.01 <0.01 <0.01
DCT <0.01 <0.01 <0.05 <0.05
DFT <0.01 <0.01 <0.05 HPF
ApEn >0.05 <0.01 <0.01 <0.01

XApEn <0.01 <0.05 <0.05 <0.01
ApEn+XApEn HPF HPF HPF <0.01

features. For comparing performance of different clas-

sifiers, a p-value < 0.05 indicates that the difference in

classification accuracies is statistically significant. Table

5 shows the p-values achieved conducting the McNe-

mar’s test. It can be observed that the improvement in

average classification accuracy by the highest perform-

ing feature for each column is statistically significant

for almost all cases. This shows that the improvements

achieved by the proposed entropy based features, when

using video data for both tasks and using accelerometer

data for suturing, is statistically significant.

We also perform experiments to compare how an

early fusion of video and accelerometer data performs

for frequency (DCT and DFT) and top performing en-

tropy features (ApEn+XApEn). The features are fused

via concatenation. Since some of the accelerometer data

had to be excluded (as described in Section 4), we only

use videos for which the corresponding accelerometer

data is available i.e 54 for knot tying and 62 for sutur-

ing. Tables 6 and 7 show the average accuracies (over

all OSATS-like criteria) with standard deviations using

different modalities for suturing and knot tying, respec-

tively.

Lastly, for a more thorough comparison, we per-

form another experiment using harder cross validation

schemes. We again compare ApEn+XApEn with DCT

and DFT. For this analysis, we use the Video+

Acceleration data for each feature type. Figure 8 shows

the average accuracies with standard deviation over all

OSATS-like criteria for 2, 5, and 10 fold cross valida-

tion schemes. Tables 8 and 9 show results for ‘hold-out’

cross validation schemes for suturing and knot tying,

respectively. For hold-out validation scheme, h% of the

data was kept as testing data (corresponding to each

column in the tables) while the remaining (100 − h)%

was used for training. Within the training data, 10%

was used as validation set. Both validation and testing
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accuracies are given in Tables 8 and 9. We do not show

training accuracy since that will always be 100% using

a nearest-neighbor classifier (each point in the training

data will be closest to itself, always).

6 Discussion

From the results presented in the previous section, we

can see that entropy based features perform better for

video data as compared to state-of-the-art techniques

in terms of accuracy. For accelerometer data, entropy

based features attain a higher accuracy for suturing

but not for knot tying (Table 2). The reasons for this

is mainly because entropy based features are depen-

dent on the dimension of the time series used (can also

be seen in Figure 5 for increasing values of K); the

higher the dimension of time series being evaluated,

the more information is captured especially for cross

entropy (XApEn). In case of accelerometer data, we

only have 3-axis acceleration values so entropy based

features cannot capture enough information. However,

entropy based features still have a higher accuracy for

suturing task. From Tables 3 and 4, we can see that

entropy based features perform well overall, however,

there isn’t a conclusive trend in terms of precision/recall

values.

Comparing the performances of using individual or

a combination of accelerometers from Figure 6, we can

observe that the combination of data from both ac-

celerometers performs better than individual accelerom-

eters. However, these differences in the performance can

potentially give us some valuable insights for skill as-
sessment. For example, in suturing, instrument data

works slightly better than wrist for most of the fea-

ture types. The reason for this could be that there is

relatively more movement of the instrument in sutur-

ing as compared to the wrist. Therefore, more motion

information would be available to differentiate between

different skills. This information can help surgeons im-

prove on their skills by focusing on their instrument

motion a bit more.

Comparing results for individual modalities shows

us that using video data performs much better than

accelerometer for all feature types. This can be ex-

plained by the fact that accelerometers only capture

the hands/needle-holder 3-D acceleration data whereas

videos can be used to extract all motions (both hands,

instruments etc.). From the results of our video and ac-

celerometer features fusion experiment (Table 6 and Ta-

ble 7), we can see that combining video and accelerom-

eter data deteriorates performance for DCT and DFT

features as compared to video data. For ApEn+XApEn,

the performance improves for knot tying but slightly de-

creases for suturing. Overall, the highest performance

is achieved using ApEn+XApEn features for each task

(shown in bold). Even while using harder cross vali-

dation schemes, the proposed ApEn+XApEn features

outperform frequency based features for both tasks for

most setups (Figure 8, Table 8, Table 9).

While out-performing the previously proposed fea-

tures for skill assessment, ApEn and XApEn also have

some limitations. Firstly, these features are somewhat

dependent on the dimensionality of the time series data;

they work better for high dimensional data, especially

for XApEn (since it can capture more information).

However, increasing dimensionality also leads to po-

tential over-fitting. Moreover, XApEn is computation-

ally expensive and can take a long time if extracted

using CPU. However, this can be overcome if a GPU

implementation is used. In [28], the authors showed

that using GPU for extracting XApEn from a multi-

dimensional time series can be more than 250x faster

than using CPU. This would be particularly important

for real time feedback.

Although, previously proposed frequency features

perform reasonably well (especially for accelerometer

data), we think that they perform well on repetitive

surgical tasks like suturing and knot tying. We believe

that the proposed entropy based features would per-

form better in other surgical procedures as well since

they try to capture the irregularity in motion instead

of just the repetitiveness. Specifically, it would be inter-

esting to see how these features perform in the recently

published JIGSAWS dataset [29] since it contains simi-

lar surgical tasks being performed on a da Vinci robot.

7 Conclusion

We presented a comparison of the proposed entropy

based features for assessment of surgical skills using

video and accelerometer data with previous state-of-

the-art techniques. Overall, our analysis showed that

videos are better for extracting skill relevant informa-

tion as compared to accelerometer. However, a fusion of

video and accelerometer features can improve the per-

formance. Also, the proposed combination of ApEn and

XApEn outperforms state-of-the-art features.

Having an automated system for surgical skills as-

sessment can significantly improve the quality of sur-

gical training. It would allow the surgical trainees to

practice their basic skills a lot more with valuable feed-

back. Moreover, such a system could also help save ex-

pert surgeon’s time that is spent on trainee assessment.
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Table 6 Average accuracies with standard deviations for corresponding feature types using different data modalities for
suturing task. Highest performance across all modalities and feature types is shown in bold

Video Accelerometer Video+Accelerometer
DCT 90.6 ± 3.1 84.5 ± 4.9 86.8 ± 7.7
DFT 87.1 ± 1.1 85.5 ± 3.0 86.1 ± 2.1

ApEn+XApEn 93.9 ± 3.7 86.8 ± 4.5 93.2 ± 6.6

Table 7 Average accuracies with standard deviations for corresponding feature types using different data modalities for knot
tying task. Highest performance across all modalities and feature types is shown in bold

Video Accelerometer Video+Accelerometer
DCT 91.7 ± 6.1 83.3 ± 2.1 83.8 ± 4.9
DFT 86.1 ± 1.9 84.7 ± 4.1 81.0 ± 5.5

ApEn+XApEn 90.3 ± 3.1 78.7 ± 5.8 94.0 ± 2.8
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Fig. 8 Average classification accuracy bars with standard deviations for different cross validation schemes by using
Video+Accelerometer data. (Best viewed in color)

Table 8 Average validation and testing accuracies over all OSATS-like criteria with standard deviations using hold-out cross-
validation for suturing with Video+Accelerometer data. The values in each cell are in the format Validation Accuracy | Testing
Accuracy. Each column corresponds to the amount of data that was left-out for testing.

Testing Set Percentage
80% 70% 60% 50% 40% 30% 20%

DCT 50.3±8.7 | 51.8±7.6 55.8±8.4 | 57.7±9.0 60.5±8.9 | 61.9±9.2 64.3±9.6 | 66.3±9.3 69.1±9.5 | 71.8±8.7 72.5±8.7 | 75.4±8.9 76.3±8.8 | 79.3±8.3
DFT 53.6±1.8 | 54.0±1.3 57.8±2.3 | 58.7±1.7 60.5±1.5 | 63.0±1.9 65.0±1.9 | 67.3±2.2 69.3±2.2 | 71.6±2.4 73.1±1.9 | 75.3±2.4 76.2±2.4 | 79.0±2.4

ApEn+XApEn 51.6±2.8 | 51.5±2.3 56.0±3.0 | 56.9±3.2 59.9±3.5 | 62.7±4.0 65.5±3.8 | 67.8±4.3 71.3±5.0 | 73.7±4.7 75.3±5.0 | 78.4±5.3 79.8±5.3 | 83.7±5.7

Table 9 Average validation and testing accuracies over all OSATS-like criteria with standard deviations using hold-out cross-
validation for knot tying with Video+Accelerometer data. The values in each cell are in the format Validation Accuracy |
Testing Accuracy. Each column corresponds to the amount of data that was left-out for testing.

Testing Set Percentage
80% 70% 60% 50% 40% 30% 20%

DCT 42.4±3.7 | 45.0±3.6 48.5±5.0 | 50.6±3.9 53.9±5.1 | 54.9±4.4 57.9±4.0 | 60.4±4.5 63.2±4.5 | 65.0±4.1 67.6±4.4 | 70.2±4.6 71.8±4.8 | 75.9±5.0
DFT 45.7±3.2 | 45.4±4.5 50.9±5.4 | 50.4±5.0 52.7±4.7 | 54.9±4.9 57.8±4.9 | 58.7±5.3 6.3±5.0 | 63.9±5.3 65.6±5.7 | 68.1±5.1 70.2±5.5 | 73.3±6.1

ApEn+XApEn 46.9±5.8 | 47.0±6.3 54.6±5.8 | 54.5±6.7 58.5±5.7 | 60.9±6.2 64.2±5.5 | 66.6±5.6 70.2±4.8 | 73.7±5.2 75.4±4.9 | 79.0±4.7 80.8±4.2 | 85.4±4.2

Conflict of Interest: The authors declare that they

have no conflict of interest.

Ethical approval: All procedures performed in studies

involving human participants were in accordance with

the ethical standards of the institutional and/or na-

tional research committee and with the 1964 Helsinki

declaration and its later amendments or comparable

ethical standards.

Informed consent: Informed consent was obtained

from all individual participants included in the study.

References

1. Martin, J., Regehr, G., Reznick, R., MacRae, H., Mur-
naghan, J., Hutchison, C., Brown, M.: Objective struc-
tured assessment of technical skill (OSATS) for surgical
residents. British Journal of Surgery 84(2) (1997) 273–
278



12 Aneeq Zia et al.

2. Sharma, Y., Bettadapura, V., Plötz, T., Hammerla, N.,
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5. Sharma, Y., Plötz, T., Hammerla, N., Mellor, S., Roisin,
M., Olivier, P., Deshmukh, S., McCaskie, A., Essa, I.:
Automated surgical OSATS prediction from videos. In:
ISBI, IEEE (2014)

6. Zia, A., Sharma, Y., Bettadapura, V., Sarin, E.L.,
Clements, M.A., Essa, I.: Automated assessment of sur-
gical skills using frequency analysis. In: International
Conference on Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015. Springer (2015)
430–438

7. Trejos, A., Patel, R., Naish, M., Schlachta, C.: Design of a
sensorized instrument for skills assessment and training
in minimally invasive surgery. In: Biomedical Robotics
and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS
& EMBS International Conference on, IEEE (2008) 965–
970

8. Nisky, I., Che, Y., Quek, Z.F., Weber, M., Hsieh, M.H.,
Okamura, A.M.: Teleoperated versus open needle driv-
ing: Kinematic analysis of experienced surgeons and
novice users. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA), IEEE (2015) 5371–
5377

9. Ershad, M., Koesters, Z., Rege, R., Majewicz, A.: Mean-
ingful assessment of surgical expertise: Semantic labeling
with data and crowds. In: International Conference on
Medical Image Computing and Computer-Assisted Inter-
vention, Springer International Publishing (2016) 508–
515

10. Brown, J., O’Brien, C., Leung, S., Dumon, K., Lee, D.,
Kuchenbecker, K.: Using contact forces and robot arm
accelerations to automatically rate surgeon skill at peg
transfer. IEEE Transactions on Biomedical Engineering
(2016)

11. Rosen, J., Hannaford, B., Richards, C.G., Sinanan, M.N.:
Markov modeling of minimally invasive surgery based
on tool/tissue interaction and force/torque signatures for
evaluating surgical skills. IEEE transactions on Biomed-
ical Engineering 48(5) (2001) 579–591

12. Reiley, C., Hager, G.: Decomposition of robotic sur-
gical tasks: an analysis of subtasks and their correla-
tion to skill. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention–
MICCAI. (2009)

13. Haro, B.B., Zappella, L., Vidal, R.: Surgical gesture clas-
sification from video data. In: International Conference
on Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2012. Springer (2012) 34–41
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