Leveraging Context to Support Automated Food Recognition in Restaurants

Georgia College of
Tech || Computing

* In 1970, 25.9% of food spending was on
food away from home

» By 2012, this number had risen to 43.1%

» 80% of Americans report eating fast-food
monthly and 40% report weekly

» Concerns: Obesity is now a major
health concern. Also challenges with
nutrition and chronic diseases

» Solution: Tracking and logging eating
habits using diaries and smartphones

* But manual tracking is time-consuming,
prone to errors and susceptible to
selective under-reporting

Features & Classifier

* Harris-Laplace point detector followed
by 6 feature descriptors:

 CMI: Color Moment Invariants
o C-S: C-SIFT

 HH: Hue Histograms

* O-S: Opponent SIFT

 R-S: RGB SIFT

e S: SIFT

» Classifier: Sequential Minimal
Optimization Multiple Kernel Learning
(SMO-MKL) SVM.
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» System performance tested on CMU's PFID 5o

food dataset

» Test images collected across 5 different
cuisines from 10 different restaurants (2 per
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cuisine). American, Indian, Italian, Mexican

and Thai

 Total of 600 testing images (300 using
mobile-phone and 300 using Google Glass)

 Total of 3,750 weakly-labeled training
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Performance of the 6 feature descriptors
and SMO-MKL on the PFID dataset.

Evaluation

Weakly-labeled training images obtained from Google Image
search for two classes of food. Left: Basil Fried Rice. Right:

Sample (12 out of 600) “in-the-wild” images used for testing.
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CMI C-S HH O-S R-S S MKL

American | 45.8% | 51.7% | 43.3% | 43.3% | 37.5% | 29.2% | 67.5%
Indian 442% | T4.2% | 55.0% | 59.2% | 69.2% | 65.0% | 80.8%
[talian 33.3% | 52.5% | 61.5% | 742% | 66.7% | 49.2% | 67.5%
Mexican | 36.7% | 35.8% | 20.8% | 37.5% | 24.2% | 33.3% | 43.3%
Thai 27.5% | 36.7% | 25.0% | 33.3% | 50.8% | 30.8% | 50.8%

Classification results showing the performance of the various

feature descriptors.
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Confusion Matrices

American | Average Accuracy: 67.50%
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Indian | Average Accuracy: 80.83%
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Italian | Average Accuracy: 74.17%

Bruschetta
Fettuccine Alfredo

Lasagna

Pesto Spaghetti

0
0
0
Margarita Pizza [0
0
0

Tiramisu

Mexican | Average Accuracy: 43.33%

Burrito 30 5 % 0 0 0 0 O O 0O O 0 0 57
Burrito Bowl -0 40 O 10 0 0 0 O O O O O 0 017
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Basil Fried Rice
Lo Mein

Pad Thai Noodles
Pad Woon Sen
Tikka Masala

Vegetable Spring Roll
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